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Abstract

Applying Fourier series expansion and a discrete ordinates method, we obtain accurate solutions of azimuthally dependent radiative
transfer in an anisotropically scattering slab with variable refractive index and oblique irradiation. It is found that in a slab with a posi-
tive gradient of refractive index the optical distance traveled by incident rays decreases, and thus the value of transmittance increases.
Besides, the increase of gradient of refractive index enhances the above effect. Influence of the optical thickness, scattering albedo and
phase function of the medium, the incident angle of irradiation and the spatial variation of refractive index on the angular distribution of
bidirectional reflectance is also investigated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the early 1990s, Siegel and Spuckler [1] investigated
the effect of variable refractive index on radiative transfer
in a semi-transparent layered medium. More recently, a
number of ray-tracing techniques have been developed to
solve the radiative transfer problems incorporating the var-
iable refractive index [2–6]. Discrete ordinates method [7,8]
and finite element method [9] were also applied to radiative
transfer in media with various spatial variations of refrac-
tive index. While the emittance of a participating slab with
variable refractive index evoked the wide interests [3,5],
only a few papers [6,8] analysed the reflectance and trans-
mittance of a participating slab with variable refractive
index and azimuthally symmetrical irradiation. The appar-
ent radiative properties of a participating slab are impor-
tant in many heat transfer and remote sensing applications.
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To understand the transport of solar radiation through
atmosphere, the interaction of azimuthally dependent inci-
dent radiation with an absorbing and scattering medium
that has a constant refractive index has been studied by a
number of investigators [10–12]. However, it is well known
that for gases in atmosphere the refractive index is a func-
tion of spatial position, because of spatial density varia-
tion. Besides, biological tissues are also scattering media
with spatially variable refractive index [13]. Understanding
light transport in tissues is essential for optical diagnosis
and laser-induced thermal therapy. The results of a Monte
Carlo simulation of laser beam propagation in a medium
with constant refractive index were presented by Fowler
and Menguc [14]. The above applications stimulate our
interest in azimuthally dependent radiative transfer in a
scattering slab with variable refractive index.

The directional-hemispherical reflectance and transmit-
tance of a participating slab with constant refractive index
have been investigated many decades ago by Pitts [15] as
well as Busbridge and Orchard [11]. Furthermore, the
directional-hemispherical and bidirectional reflectance
and transmittance were calculated by Evans et al. [16].
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Nomenclature

an coefficient of scattering phase function

aðmÞn coefficient defined in Eq. (9a)
az interpolation factor; see Eq. (28)
al interpolation factor; see Eq. (29)
A coefficient of Eq. (30) or the absorptance

A = 1 � R � T

B coefficient of Eq. (30)
C coefficient of Eq. (30)
D source term
I radiative intensity
Ir reflected intensity at z = 0
Ik kth coefficient of Fourier series expansion of the

intensity
L thickness of the slab
M total number of discrete ordinates
n refractive index
�n normalized refractive index, n(z)/n0

n0 gradient of the refractive index
n0 ? nL linear refractive index, defined as n(z) = n0 +

(nL � n0)z/L
N order of the phase function or number of spatial

grids
p(B) scattering phase function
Pn Legendre polynomial
P m

n associated Legendre function
qc radiative flux of the collimated irradiation

through a surface normal to the incident direc-
tion

R directional-hemispherical reflectance
s(z,l) curvilinear length of the ray; see Eq. (15)
S source function
T directional-hemispherical transmittance
wm weighting factor
z geometrical coordinate

Greek symbols

a coefficient; see Eq. (26)
b extinction coefficient
c coefficient of the angular redistribution term; see

Eq. (4)
d delta function
Dz size of spatial grids
B directional cosine of the scattering angle; see Eq.

(6)
h polar angle
l l = cosh
q00 bidirectional reflectance of a slab
qij interface reflectance for radiation incident on re-

gion j from region i

s0 optical thickness
/ azimuthal angle
x scattering albedo
X solid angle

Subscripts

0 top boundary
1 surroundings
b index of discrete ordinates method
c collimated irradiation or reduced collimated

radiation part
e index of discrete ordinates method
i reduced irradiation
j jth spatial grid
L location z = L

m mth discrete ordinate
s fairly diffuse part due to scattering
t index of discrete ordinates method
w index of discrete ordinates method
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Directional reflectance and transmittance from a finite
scattering slab with normal incident radiation and non-
unity constant refractive index were obtained by Hottel
and co-workers [17]. Influence of constant refractive index
on directional-hemispherical and bidirectional reflectance
from a semi-infinite scattering medium with collimated
incident radiation was investigated by Armaly and Lam
[18]. Bidirectional reflectance for a scattering finite slab
with non-unity constant refractive index was analysed by
Roux and Smith [19]. A general problem of azimuthally
dependent incident radiation, anisotropically scattering
and reflecting boundaries were solved by Kumar and Fels-
ke [12]; they reported the reflectance, transmittance and
azimuthally dependent distribution of intensities at the
boundaries of a slab with unity refractive index. To our
knowledge, no work has investigated azimuthally depen-
dent radiative transfer in a scattering slab with variable
refractive index.

Radiative transfer in an anisotropically scattering planar
medium with variable refractive index and azimuthally
dependent incident radiation is the subject of the present
study. Due to azimuthally dependent incident radiation
and anisotropical scattering, the radiative transfer consid-
ered is a problem with no azimuthal symmetry. The direc-
tional-hemispherical and the bidirectional reflectance and
the transmittance of this case are presented. These appar-
ent properties are dependent on the size and the absorption
and scattering properties of the medium, the angular distri-
bution of the incident radiation, and the spatial distribu-
tion of refractive index of the medium. Effects of the
parameters on the apparent properties of planar media
with various gradients of refractive index are investigated.
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2. Analysis

We consider a planar, absorbing and anisotropically
scattering medium with spatially varying refractive index,
as shown in Fig. 1. At the top (z = 0), the medium is
bounded by a non-participating medium (n1 = 1) and is
exposed to collimated radiation impinging along the direc-
tion (hc1,/c1). At the bottom (z = L), the medium is
bounded by a cold, black substrate. The distribution of
refractive index in the medium is linear, from the values
n0 to nL; that is, n(z) = n0 + (nL � n0)z/L. Besides, it is
assumed that the emission of the medium is negligible as
compared with the incident radiation. The equation of
radiative transfer in the medium can be expressed as

l
oIðz; l;/Þ

oz
þ cðzÞ o½ð1� l2ÞIðz; l;/Þ�

ol
þ bIðz; l;/Þ

¼ Sðz; l;/Þ ð1Þ

subject to the following boundary conditions:

Iðz; l;/Þjz¼0 ¼ qc

n2
0

n2
1

ð1� q10Þdðl0 � lc0Þdð/0 � /c0Þ

þ q01Iðz;�l;/Þjz¼0 for l > 0; ð2Þ
Iðz; l;/Þjz¼L ¼ 0 for l < 0; ð3Þ

where I denotes the radiation intensity, l = cosh with h
denoting the angle between the positive z-axis and the
direction of radiation intensity, / the azimuthal angle, b
the extinction coefficient, c defined as

cðzÞ ¼ 1

nðzÞ
dnðzÞ

dz
; ð4Þ

S(z,l,/) the source function, qc the total radiative heat flux
of the collimated irradiation through a surface normal to
the incident direction, q10 interface reflectance for radiation
incident on the medium from surroundings, d the Dirac-
delta function, and the subscripts 0 and c the top boundary
and the collimated irradiation, respectively, q01 interface
reflectance for radiation incident on surroundings from
the medium. Here

Sðz; l;/Þ ¼ xb
4p

Z 2p

/0¼0

Z 1

l0¼�1

pð1ÞIðz; l0;/0Þdl0 d/0; ð5Þ
0n

Ln

0cθ

z

cθ

z L

1n cq

cI

1cdΩ

cdΩ

0cI
0cdΩ

1cθ

Fig. 1. Physical model and coordinate systems.
where x is the single scattering albedo, p(B) the scattering
phase function and

1ðl;/; l0;/0Þ ¼ ll0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l02

p
cosð/� /0Þ ð6Þ

with (h0,/0) and (h,/) denoting the direction of the incident
and scattering rays. We assume that the phase function can
be expanded in terms of Legendre polynomials (Pn) in the
form

pð1Þ ¼
XN

n¼0

anP nð1Þ; a0 ¼ 1: ð7Þ

Here, B is given by Eq. (6), and so the phase function can be
expressed as

pð1Þ ¼
XN

m¼0

XN

n¼m

ð2� d0mÞaðmÞn P m
n ðlÞP m

n ðl0Þ cos mð/� /0Þ;

ð8Þ

where

aðmÞn � an
ðn� mÞ!
ðnþ mÞ! for n ¼ m; . . . :;N and 0 6 m 6 N ;

ð9aÞ

d0m ¼
1 for m ¼ 0;

0 otherwise;

�
ð9bÞ

and P m
n is the associated Legendre function.

Following Chandrasekhar [10], we divide the intensity
into the reduced collimated intensity after partial extinction
by absorption and out-scattering along the incident direc-
tion, Ii, and a fairly diffuse part due to the radiation scat-
tered by the medium into the direction (h,/), Is. With
this distinction between the two parts of radiation, one
can express the equation for the fairly diffuse part as

l
oIsðz; l;/Þ

oz
þ cðzÞ o½ð1� l2ÞIsðz; l;/Þ�

ol
þ bIsðz; l;/Þ

¼ Siðz; l;/Þ þ
xb
4p

Z 2p

/0¼0

Z 1

l0¼�1

pð1ÞIsðz; l0;/0Þdl0 d/0;

ð10Þ

subject to the following boundary conditions:

Isðz;l;/Þjz¼0 ¼ q01Isðz;�l;/Þjz¼0 for l > 0; ð11Þ
Isðz;l;/Þjz¼L ¼ 0 for l < 0: ð12Þ

Here,

Siðz; l;/Þ ¼
xb
4p

Z 2p

/0¼0

Z 1

l0¼�1

pð1ÞI iðz; l0;/0Þdl0 d/0: ð13Þ

The reduced collimated intensity can be expressed as

I iðz; l;/Þ ¼ qc
n2ðzÞ

n2
1

ð1� q10Þdðl0 � lc0Þdð/0 � /c0Þe�bsðz;lÞ;

ð14Þ

where s(z,l) is the curvilinear length on the ray trajectory
from the top boundary to the position z. Following Ben



2704 C.C. Chang, C.-Y. Wu / International Journal of Heat and Mass Transfer 51 (2008) 2701–2710
Abdallah and Le Dez [2], we can write the curvilinear
length of the ray as

sðz; lÞ ¼ s0n0

bðnL � n0Þ
nðzÞ l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1� n2ðzÞ

n2ðzÞ

s" #
; ð15Þ

where s0 = bL and �nðzÞ ¼ nðzÞ=n0. Substituting Eq. (14)
into Eq. (13), we obtain

Siðz; l;/Þ ¼
xb
4p

lc1

lc
p½1ðl;/; lc;/cÞ�qcð1� q10Þe�bsðz;lcÞ:

ð16Þ

Here, the directional cosines at different positions on a ray
are related by Snell’s law. For example

lcðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1ð1� l2
c1Þ

n2ðzÞ

s
: ð17Þ

Besides, the spatially varying refractive index has no effect
on the azimuthal angle of rays, and so /c = /c0 = /c1.

Following Chandrasekhar [10], we expand the intensity
Is in the form:

Isðz; l;/Þ ¼
X1
k¼0

Ikðz; lÞ cos kð/c � /Þ: ð18Þ

Substituting Eq. (18) into Eq. (10), one can find that the
resulting equation can be separated into a set of simpler
equations for the functions Ik(z,l) because of the linear
independence of cos k(/c � /) [20]. By collecting the coef-
ficient of cos k(/c � /) we obtain

l
oIkðz; lÞ

oz
þ cðzÞ o½ð1� l2ÞIkðz; lÞ�

ol
þ bIkðz; lÞ ¼ 0

for k > N ; ð19Þ

l
oIkðz; lÞ

oz
þ cðzÞ o½ð1� l2ÞIkðz; lÞ�

ol
þ bIkðz; lÞ

¼ xb
4p

lc1

lc
qcð1� q10Þe�bsðz;lÞ

XN

n¼k

ð2� d0kÞaðkÞn P k
nðlÞP k

nðlcÞ

þ xb
2

XN

n¼k

aðkÞn P k
nðlÞ

Z 1

l0¼�1

P k
nðl0ÞIkðz; l0Þdl0

for k 6 N ; ð20Þ

where k = 0,1, . . . ,N and n = k,k + 1, . . . ,N.
Similarly, we can express the boundary conditions for

these equations as

Ikðz;lÞjz¼0 ¼ q01Ikðz;�lÞ for l > 0; ð21Þ
Ikðz;lÞjz¼L ¼ 0 for l < 0: ð22Þ

Eq. (19) with the boundary conditions (Eqs. (21) and (22))
are all homogeneous, and so they are not needed. There-
fore, the azimuthally dependent problem consisting of
Eqs. (1)–(3) has been transformed into the azimuthally
symmetric problem consisting of Eqs. (20)–(22).

When we consider a three-term phase function (N = 2),
we have three equations for I0(z,l), I1(z,l) and I2(z,l),
l
oI0ðz; lÞ

oz
þ cðzÞ o½ð1� l2ÞI0ðz; lÞ�

ol
þ bI0ðz; lÞ

¼ xb
4p

lc1

lc
qcð1� q10Þe�bsðz;lcÞ

� 1þ a1llc þ
1

4
a2ð3l2 � 1Þð3l2

c � 1Þ
� �

þ xb
2

Z 1

l0¼�1

I0ðz; l0Þdl0 þ a1l
Z 1

l0¼�1

l0I0ðz; l0Þdl0
�

þ 1

4
a2ð3l2 � 1Þ

Z 1

l0¼�1

ð3l02 � 1ÞI0ðz; l0Þdl0
�
; ð23Þ

l
oI1ðz; lÞ

oz
þ cðzÞ o½ð1� l2ÞI1ðz; lÞ�

ol
þ bI1ðz; lÞ

¼ xb
4p

lc1

lc
qcð1� q10Þe�bsðz;lcÞ

� a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

c

q
þ 3a2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

c

q
lc

n o
þ xb

2

1

2
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p Z 1

l0¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l02

p
I1ðz; l0Þdl0

�

þ 3

2
a2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
l
Z 1

l0¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l02

p
l0I1ðz; l0Þdl0

�
; ð24Þ

l
oI2ðz; lÞ

oz
þ cðzÞ o½ð1� l2ÞI2ðz; lÞ�

ol
þ bI2ðz; lÞ

¼ xb
4p

lc1

lc
qcð1� q10Þe�bsðz;lcÞ � 3

4
a2ð1� l2Þð1� l2

cÞ
� �

þ xb
2

3

8
a2ð1� l2Þ

Z 1

l0¼�1

ð1� l02ÞI2ðz; l0Þdl0: ð25Þ

All of them have the homogeneous boundary conditions,
Eqs. (21) and (22). Each of the problems for the unknown
functions Ik(z,l) is similar to the radiative transfer problem
solved by Lemonnier and Le Dez [7]. Here, we adapt the
discrete ordinates method [7] to solve these problems. That
is, we consider the function Ik along M directions with an
equally spaced distribution of l and use a constant weight
quadrature, wm = 2/M. The function Ik is evaluated at each
of the discrete directions lm and the angular integration in
Eqs. (23), (24) or (25) is replaced by a weighted sum. Be-
sides, the medium is divided into N slices of Dz = L/N;
the unknown within the slice centers at zj. To obtain the fi-
nite-difference of the angular redistribution term, we adopt
the numerical technique proposed by Lemonnier and Le
Dez [7]

o½ð1� l2ÞIk
j �

ol

( )
l¼lm

�
amþ1=2Ik

mþ1=2;j � am�1=2Ik
m�1=2;j

wm
; ð26Þ

where Ik
m�1=2;j is the function Ik at the boundaries between

two directional grids. Here, the coefficient am±1/2 are given
by the recursion formula

amþ1=2 ¼ am�1=2 � 2wmlm ð27Þ

with a1/2 = 0 and aM+1/2 = 0.
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Next, applying the spatial differencing to Eqs. (20)–(22)
and integrating the resulting equations over the slice j and
over the solid angle wm around lm yield the discrete ordi-
nate representation of Eqs. (20)–(22). In these equations,
there are three unknown functions ðIk

m;e; I
k
t;j; I

k
m;jÞ while only

two are known from a previous spatial step or from bound-
ary conditions. Here, the subscripts e and t denote
e ¼ jþ signðlmÞ 1

2
and t ¼ mþ signðn0jÞ 1

2
, respectively. To

complete the differencing procedure, we adopt the auxiliary
differencing relationship developed by Lemonnier and Le
Dez [7]

Ik
m;e ¼

1

az

n2
e

n2
j

Ik
m;j þ 1� 1

az

� �
n2

e

n2
w

Ik
m;w with

1

2
6 az 6 1; ð28Þ

Ik
t;j ¼

Ik
m;j

al
þ 1� 1

al

� �
Ik

b;j with
1

2
6 al 6 1; ð29Þ

where the subscripts w and b denote w ¼ j� signðlmÞ 1
2

and
b ¼ m� signðn0jÞ 1

2
, respectively. The above notations are

developed for the convenience of sweeping the space-angle
mesh. Then, we obtain the finite-difference form of Eq. (23)

AmðIk
m;e � Ik

m;wÞ þ Bt;jIk
t;j � Bb;jI k

b;j þ Cm;jIk
m;j ¼ Dm;j

with k ¼ 0; ð30Þ

where Am = jlmjwm, Bt;j ¼
jn2

jþ1=2
�n2

j�1=2
j

2n2
j

at, Bb;j ¼
jn2

jþ1=2
�n2

j�1=2
j

2n2
j

ab,
Cm,j = bwmDz, and

Dm;j ¼ wmDz
xb
4p

�
(

1þ a1lmlcðzjÞ þ
1

4
a2ð3l2

m � 1Þð3l2
cðzjÞ � 1Þ

� �

� lc1

lcðzjÞ
qcð1� q10Þe�bs½zj;lcðzjÞ�

þ 2p
XM

m0¼1

wm0I0
m0;j þ 2pa1lm

XM

m0¼1

wm0I0
m0;jlm0

þ 2p
1

4
a2ð3l2

m � 1Þ
XM

m0¼1

wm0 I0
m0 ;jð3l2

m0 � 1Þ
)
: ð31Þ

The finite-difference form of Eqs. (24) and (25) can be ex-
pressed similarly, except that the superscripts k = 1 and
k = 2 for Eqs. (24) and (25), respectively, the Dm,j corre-
sponding to Eq. (24) is

Dm;j ¼ wmDz
xb
4p

(
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

cðzjÞ
p�

þ 3a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q
lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

cðzjÞ
q

lcðzjÞ
�

� lc1

lcðzjÞ
qcð1� q10Þe�bs½zj;lcðzjÞ�

þ pa1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q XM

m0¼1

wm0I1
m0;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m0

q

þ 3pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m

q
lm

XM

m0¼1

wm0 I1
j;m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

m0

q
lm0

)
ð32Þ
and the Dm,j corresponding to Eq. (25) is

Dm;j ¼ wmDz
xb
4p

(
3

4
a2ð1� l2

mÞð1� l2
cðzjÞÞ

� lc1

lcðzjÞ
qcð1� q10Þe�bs½zj;lcðzjÞ�

þ 3

4
pa2ð1� l2

mÞ
XM

m0¼1

wm0I2
j;m0 ð1� l2

m0 Þ
)
: ð33Þ

The boundary conditions can be expressed readily as

Ik
m;1=2 ¼ q01Ik

Mþ1�m;1=2 for M=2þ 1 6 m 6 M ; ð34Þ
Ik

m;Nþ1=2 ¼ 0 for 1 6 m 6 M=2: ð35Þ

Eq. (30) with Eq. (31), (32) or (33) is similar to the finite-
difference form of discrete ordinates equation solved by
Lemonnier and Le Dez [7], except the following three
points. First, the source term Dm,j involves the unknown
function Ik

m;j, and so the simultaneous solution of the sys-
tem of equations has to be obtained by iteration. Second,
the value of the unknown I1

m;j is not always positive. Thus,
to solve I1

m;j, we set the value of az to be unity. Third, the
present results of numerical experiment have wiggles, ex-
cept that we use al = 1. Comparisons of the results ob-
tained by setting different values of al are discussed in
Section 3.

Once I0(z,l), I1(z,l) and I2(z,l) are known, the intensity
Is can be obtained from Eq. (18) and the intensity
I = Is + Ii can be calculated. After solving I, one can obtain
the radiative flux by integrating Il over solid angle. The
results in terms of dimensionless variables seem to be more
general. Two of the dimensionless radiative fluxes, the
directional-hemispherical reflectance and transmittance,
are of practical interest. Their discrete ordinates forms
are as follows:

Rðlc1;/c1Þ ¼ q10 þ
2p
PM=2

m¼1

wmlmð1� q01ÞI0
m;1=2

qclc1

; ð36Þ

T ðlc1;/c1Þ ¼
I iðL; lcL;/cÞlc1

n2
0

n2
L

qclc1

þ
2p

PM
m¼M=2þ1

wmlmI0
m;Nþ1=2

qclc1

: ð37Þ

The energy transmitted into the substrate will eventually be
absorbed, because the substrate is assumed to black. Final-
ly, the bidirectional reflectance has the discrete ordinates
form

q00ðlc1;/c1; l1;/1Þ ¼
I rð0; l1;/1Þ

qclc1

; ð38Þ

where Ir(0,l1,/1) is the reflected intensity and can be ex-
pressed as

Irð0; l1;/1Þ ¼ q10qcdðl1 þ lc1Þdð/1 � /c1 � pÞ

þ n2
1

n2
0

ð1� q01ÞIsð0; l0;/0Þ: ð39Þ



Table 1
Directional-hemispherical reflectance and transmittance for the case with
Rayleigh scattering, n = 1 ? 1.5, x = 1.0, s0 = 1.0 and lc1 = 0.6

M

180 360 720 1080

N = 100

R 0.2846 0.2844 0.2843 0.2843
T 0.7154 0.7156 0.7157 0.7157
R + T 1.0000 1.0000 1.0000 1.0000

N = 200

R 0.2846 0.2844 0.2843 0.2843
T 0.7154 0.7156 0.7157 0.7157
R + T 1.0000 1.0000 1.0000 1.0000
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Here l1 and l0 are related by Snell’s law and /1 = /0. The
first term on the right hand side of Eq. (39) is due to inter-
face reflection, while the second term is the result of med-
ium scattering. Besides, the bidirectional reflectance
excluding interface reflection is denoted by q00s . When
l0 = lm

Isð0; l0;/0Þ ¼ I0
m;1=2 þ I1

m;1=2 cosð/0 � /cÞ
þ I2

m;1=2 cos 2ð/0 � /cÞ: ð40Þ

To find the Is(0,l0,/0) in directions other than the direc-
tion (lm,/0), we can use numerical interpolation or the for-
mal solution of radiative intensity. The formal solution can
be obtained by replacing the emission term in Eq. (7) of
Ref. [2] with the source function.
Table 2
Directional-hemispherical reflectance and transmittance for the case with
Rayleigh scattering, n = 1.4 ? 1.6, x = 1.0, s0 = 5.0 and lc1 = 0.866

M

180 360 720 1080

N = 250

R 0.5878 0.5876 0.5875 0.5875
T 0.4122 0.4124 0.4125 0.4125
R + T 1.0000 1.0000 1.0000 1.0000

N = 500

R 0.5878 0.5876 0.5875 0.5875
T 0.4122 0.4124 0.4125 0.4125
R + T 1.0000 1.0000 1.0000 1.0000
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Fig. 2. Effect of al on the value of q00(l1, /c) for the case with n = 1 ? 1.5,
a1 = 1, x = 0.9, s0 = 1 and lc1 = 0.6.
3. Results and discussion

Based on the preceding theoretical and numerical anal-
yses, a computer code has been developed which is capable
of modeling radiative transfer in an anisotropically scatter-
ing planar medium with variable refractive index and azi-
muthally dependent incident radiation. A discontinuity of
refractive index at the interface results in the interface
reflection and refraction, while the continuously spatial
variation of the refractive index in the medium causes the
curved path of the radiation streams. The present code
can take both variations of refractive index into account.
In a first step, we consider cases with either n0 = n1 or
n0 6¼ n1 to validate the code. To test the sensitivity of the
method on the number of grids, N and M, the direc-
tional-hemispherical reflectance (R) and transmittance (T)
of the case with n0 = n1 and n0 6¼ n1 are shown in Tables
1 and 2, respectively. The latter is a case with a larger opti-
cal thickness, and so a larger number of spatial grids (N)
are necessary for accurate results. Both tables show that
the number of directional grids M = 720 is sufficiently large
to generate results with four digit convergence. The num-
ber of directional grids M = 720 is four times of that used
in azimuthally symmetrical radiative transfer [7]. Except N

and M, the interpolation factor al is also an important
parameter of computation. Fig. 2 shows the bidirectional
reflectance (q00) of the case with linearly anisotropic scatter-
ing, x = 0.9, s0 = 1 and lc1 = 0.6. The results of the q00 in
the plane normal to z = 0 surface containing the collimated
irradiation (/ � /c = 0) are obtained by using different val-
ues of al. It is readily to see the wiggles of the q00 curves,
except those obtained by using al = 1. This particular
choice of al makes the auxiliary relationship, Eq. (29),
become Ik

mþ1=2;j ¼ Ik
m;j for n0j > 0 and Ik

m�1=2;j ¼ Ik
m;j for

n0j < 0. The resulting relationship is similar to the step
method applied to the slab geometry transport equation
and ensures nonnegative intensity values [21]. Therefore,
we use al = 1 in this work. The CPU time varies with com-
putational and physical parameters described above. The
number of the parameters is too large for any comprehen-
sive coverage. However, for example, a set of R and T for
the case shown in Table 1 obtained by using N = 100 and
M = 720 takes 1228 seconds on a 2.66 GHz Pentium-IV
personal computer. Moreover, that obtained by using
N = 200 and M = 720 takes 2476 seconds and obtained
by using N = 100 and M = 360 takes 305 seconds. There-
fore, the CPU time seems to be approximately propor-
tional to either N or M2.

Since no work has investigated azimuthally dependent
radiative transfer in a scattering slab with variable refrac-
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tive index, we compared our results with those obtained
from the modified FN method for cases with a unity refrac-
tive index [12]. Table 3 shows the directional-hemispherical
transmittance for a weakly scattering medium with
lc1 = 0.6 and various optical thicknesses. The normal
intensities for the cases with istropical scattering and Ray-
leigh scattering are presented in Table 4 for a strongly scat-
tering medium (x = 0.9). Both tables show that the present
results are in excellent agreement with the results obtained
from the modified FN method.

After validating the present solution method, we investi-
gated the effects of the parameters lc1, n(z), s0, x and p(B)
for cases with either n0 = n1 or n0 6¼ n1. The latter is a bit
more complicated than the former, because the latter
involved both the effect of the jump of refractive index at
the interface and that of the continuously spatial variation
of the refractive index in the medium. To facilitate the dis-
cussion, we began with the discussion of the cases with
n0 = n1. The number of parameters is too large for a com-
prehensive coverage. The apparent properties of planar
media T, R, A (absorptance) and q00– are obtained for the
refractive index with linear distribution, and the phase
functions with N 6 2 are considered.

Fig. 3 shows the T, R and A of a planar medium with
Rayleigh scattering, x = 0.9 and s0 = 1. From Fig. 3 the
following trend may be observed. (i) As lc1 decreases the
optical distance traveled by the collimated irradiation
increases. Thus, more energy is lost due to scattering and
absorption and the value of T decreases with the decrease
of lc1. (ii) When the irradiation travels from z = 0 to
z = L in a medium with a positive gradient of refractive
index, the rays tend to move toward the normal. Thus,
the optical distance traveled by rays decreases and the
value of T increases. The larger the gradient of refractive
index is, the shorter the optical distance is traveled and
Table 3
Directional-hemispherical transmittance for the case with Rayleigh
scattering, n = 1, x = 0.01, lc1 = 0.6 and a variety of optical thicknesses

s0 T

Ref. [12] This work

0.01 0.98355 0.98355
0.10 0.84712 0.84712
1.00 0.19012 0.19012
2.00 0.03618 0.03618
3.00 0.00691 0.00691
5.00 0.00026 0.00026

Table 4
Emerging intensities for the cases with n = 1, x = 0.9, lc1 = 0.6, s0 = 1.0,
isotropically scattering and Rayleigh scattering

Isotropically scattering Rayleigh scattering

Ref. [12] This work Ref. [12] This work

I(0, � 1) 0.0528 0.0528 0.0517 0.0517
I(L,1) 0.0450 0.0450 0.0440 0.0440
the larger the value of T is. (iii) By contrast, the reflectance
and the absorptance decrease with the increase of gradient
of refractive index.

Comparing the lines with dots (s0 = 5) and without dots
(s0 = 1) for a fixed value of a1 in Fig. 4a, one may find that
the value of q00 increases with the increase of the optical
thickness. Similarly, comparing the lines with dots (n = 1)
and without dots (n = 1 ? 1.5) for a fixed value of a1 in
Fig. 4b, one may find that the q00 decrease with the increase
of gradient of refractive index. From Fig. 4 (hc1 = 30�) the
following complicated dependence of the q00 on the phase
function may be observed. In the plane normal to z = 0
surface containing the collimated irradiation, the q00

around the direction opposite to that of the irradiation
(/ = /c + 180�) has a higher value for the phase function
that scatters more in the backward direction (a1 = �1 for
the cases considered) and is lower for the more forward
scattering phase function (a1 = 1 for the cases considered),
as shown in Fig. 4b. In the plane with / = /c, the space
between the curves of q00 for a1 = �1, 0, and 1 reduces as
the value of l1 increases. Then, each pair of the q00 curves
intersects at a certain l1 and the value of q00 for the phase
function with a small a1 becomes less than that for the
phase function with a large a1 as the l1 increases further.
The three curves for a1 = �1, 0, and 1 intersect at more
than one points, though the points of intersection are very
close. The values of l1 at the points of intersection increase
with the decrease of optical thickness or the increase of gra-
dient of refractive index, as shown in Fig. 4.

The azimuthal distribution of reflected intensity shown
in Fig. 5 reveals that radiative transfer in an anisotropically
scattering medium exposed to an oblique collimated irradi-
ation is azimuthally unsymmetrical. The reflected intensity
of the nearly isotropical Rayleigh scattering is nearly azi-
muthally symmetrical, as shown in Fig. 5b. However, radi-
ative transfer in an isotropically scattering medium is
azimuthally symmetrical, because the source function is
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curves); (b) isotropical scattering (dash curves) and Rayleigh scattering
(solid curves).
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still independent of direction for an isotropically scattering
medium exposed to an oblique irradiation. Besides, the
reflected intensity at / = /c has the highest value among
the reflected intensities with the same h1 for the phase func-
tion that scatters most in the forward direction and, by
contrast, the reflected intensity at / = /c + 180� has the
highest value for the phase function that scatters most in
the backward direction, as shown in Fig. 5a. Similar to
the q00 shown in Fig. 4b, the reflected intensity of the med-
ium with a positive gradient of refractive index is less than
that of the medium with unity refractive index, as shown in
Fig. 5. This is because the irradiation travels a longer opti-
cal distance in a medium with unity refractive index and so
has a larger contribution of scattering to the emerging
intensity at z = 0. Besides, it is found that the variation
of refractive index does not greatly change the dependence
on /.

Next, the effect of the interface with n0 6¼ n1 is added to
the parameter investigation. The directional-hemispherical
transmittance and reflectance of three media with refractive
indices, n = 1 ? 2, n = 1.4 ? 1.6 and n = 1.5, are shown
in Fig. 6. The distributions of refractive index have the
same average, but different gradients. Besides, the interface
at z = 0 of the medium with n = 1 ? 2 is non-reflecting,
while the interface of the other two cases is reflecting.
The reflectance of the interface with n0 6¼ n1 is determined
by Fresnel equations [20]. Fig. 6 reveals that the Fresnel
reflection causes a marked decrease in the value of T and
an increase in the value of R. The effect of interface reflec-
tion increases with the decrease of lc1. Comparing the
curves of n = 1.4 ? 1.6 and n = 1.5, we find that the T

increases and the R decreases with the increase of the gra-
dient of refractive index. This trend is similar to that
observed from the cases without interface reflection shown
in Fig. 3. The effect of continuous variation of refractive
index is small in comparison with that of interface reflec-
tion due to a jump of refractive index.

From Figs. 7 and 8 the following trends may be
observed. (i) The value of R increases and that of T
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decreases as the optical thickness increases. (ii) Similar to
the trend observed from Fig. 6, the T increases and the R

decreases with the increase of the gradient of refractive
index. (iii) The spaces among the R curves and those
among the T curves decrease with the decrease of the
gradient of refractive index. (iv) Reducing the albedo
decreases the values of R and T.

Fig. 9 shows the effects of distribution of refractive index
on the bidirectional reflectance. The Fresnel reflection
causes a marked variation of q00s around the glancing angle.
When the gradient of refractive index is fixed, reducing the
average of refractive index increases the overall magnitude
of q00s , as shown in Fig. 9(a). Moreover, fixing the average of
refractive index and reducing the gradient of refractive
index increase the overall magnitude of q00s , as shown in
Fig. 9b.
4. Conclusions

This work considers azimuthally dependent radiative
transfer in an anisotropically scattering slab with variable
refractive index and oblique collimated irradiation. The
transformation of the azimuthally dependent problem into
a set of azimuthally symmetric problems follows the series
expansion of the intensity proposed by Chandrasekhar
[10]. Then, the discrete ordinates method has been adapted
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to solve the azimuthally independent problems. After vali-
dating the present solution method, we investigate the
effects of physical parameters. The following conclusions
could be drawn from the apparent properties obtained:

(i) As the incident angle increases the optical distance
traveled by the collimated irradiation increases, and
so the magnitude of T decreases. Moreover, in a med-
ium with a positive gradient of refractive index, the
rays of the irradiation tend to move toward the nor-
mal. Thus, the optical distance traveled by incident
rays decreases and the value of T increases. The
increase of positive gradient of refractive index
increases the magnitude of T. Reversely, the values
of R and q00 decrease with the increase of gradient
of refractive index.

(ii) The values of R and q00 increase as the optical thick-
ness increases.

(iii) The value of q00 at / = /c has the highest value for the
phase function that scatters most in the forward
direction and, by contrast, the q00 at / = /c + 180�
has the highest value for the phase function that scat-
ters most in the backward direction.

(iv) The azimuthal distribution of reflected intensity is
mainly determined by the phase function and
(hc1,/c1). The variation of refractive index does not
greatly change the dependence of q00 on /.

(v) The effect of continuous variation of refractive index
on the apparent properties is small in comparison
with that of interface reflection due to a discontinuity
of refractive index. The interface reflection causes a
marked decrease in the value of T and an increase
in the value of R.

(vi) Reducing the albedo decreases the values of R and T.
(vii) When the gradient of refractive index is fixed, reduc-

ing the average of refractive index increases the over-
all magnitude of q00s . Besides, fixing the average of
refractive index and reducing the gradient of refrac-
tive index increase the overall magnitude of q00s .
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